本篇文章主要给网友们分享区块链实时监测的知识,其中更加会对区块链追踪技术进行更多的解释,如果能碰巧解决你现在面临的问题,记得关注本站!
“区块链”遇上“管廊机器人”
8月31日上午区块链实时监测, 西咸新区沣西新城 “区块链+管廊机器人”智能巡检监测系统上线运行仪式 在智慧管廊控制中心举行,标志着新城综合管廊开启人工智能2.0时代。
仪式上,投资公司负责人介绍“区块链+管廊机器人”智能巡检监测系统情况,集团公司董事长 杨建柱 、总经理 姜勤发 为新运行机器人揭幕,随后参观新城智慧管廊控制中心。
本次亮相区块链实时监测的 2台巡检机器人 和 2台灭火机器人 利用区块链技术去中心化、信息不可篡改、数据公开透明可追溯等天然优势,展现运维过程三大重要应用场景。
•去中心化: 在中心服务器瘫痪情况下,巡检机器人和灭火机器人触发智能合约,达成共识决策,在最短时间内可就近发现并有效消除火灾。
•信息不可篡改: 链上数据一旦生成,每个节点将会共享和复制整条链上信息,修改任一节点数据均是无效,保证数据安全可靠。
•数据公开透明可追溯: 基于区块链架构的“GIS+BIM”数据共享至规划部门、管廊公司、管线用户、养护单位等组成的联盟链上,成员可随时获取链上任意信息。因此,管线入廊手续办理由30天缩至1天,大大节省各项成本。
此次升级的管廊机器人还具备 自动充换电、智能变轨、拐弯爬坡、智能灭火、移动端管理 等功能。
据悉,沣西新城机器人巡查监测系统在辖区已成功运行 三年 ,且在 智能监测、人工智能和三维BIM成像 三项技术层面达到国内领先水平。同时,还打造集机器人、智能井盖、消防系统、数据服务引擎等为一体的三维地下管网应用系统,大幅提升管廊运维智慧化水平。
未来,智慧化管廊建设将逐步实现 全域资产数字化 ,或将催生管廊小件物流、管廊大数据等产业新业态。
据有关业内专家介绍,将区块链技术应用于管廊机器人智能巡检监测系统,目前 在全球范围内尚属首次 。
沣西新城坚持围绕产业链部署创新链、围绕创新链布局产业链,充分发挥区块链作为产业浪潮重要引擎作用,积极 探索 区块链技术在综合管廊运维管理中深度应用,推动区块链和实体经济融合发展。
“区块天眼”被下架,涉嫌为虚拟货币交易提供导流服务
官网显示,“区块天眼”是一款区块链行业平台信息查询工具,其开发商为WikiBit,公司主体为上海万查数据 科技 有限公司。
天眼查上的工商资料显示,上海万查数据 科技 有限公司成立于2020年4月9日,注册资本为100万元,法定代表人为张南平,大股东为香港注册的爱富爱克斯有限公司。
根据区块天眼官网介绍,其核心功能是对收录的区块链项目提供基本信息查询、监管牌照查询、信用评价、平台鉴定等服务。
其中包括加密货币交易所、通证、项目信息查询,口碑查询、投诉维权、风险曝光、信用评价等,能实时监测加密货币交易平台、通证或周边关联动态风险合规。同时也会为用户提供加密货币市场行情、区块链行业新闻、行业书籍售卖等服务。
截止9月7日,该平台已经收录了5837个交易所,8364个通证,26个监管机构,业内人士称之为币圈的“天眼查”。
值得一提的是,7月中旬,国内另一区块链行业自媒体“币世界”APP也被下架,详情请见《区块链自媒体币世界被约谈关停 真格基金、顺为资本等参投》。
5月21日,国务院金融稳定发展委员会明确表态将打击比特币挖矿和交易。随后全国掀起了新一轮的虚拟货币监管,并且监管动作覆盖行业上下游、多个环节、各个方位。
近日,中国人民银行刚刚发布《中国金融稳定报告(2021)》(下称《报告》), 其中提到,强化平台企业金融活动监管,打击比特币挖矿和交易行为。 抓紧补齐监管制度短板,加快完善现代金融监管体系,加强监管协调。健全金融风险问责机制,对重大金融风险严肃追责问责,有效防范道德风险。
此外,《报告》在防范化解重大金融风险攻坚战的主要成果中还提出, 金融秩序得到全面清理整顿。在营P2P网贷机构全部停业,互联网资产管理、股权众筹、互联网保险、虚拟货币交易、互联网外汇交易等领域整治工作基本完成,已转入常态化监管。
数字人民币试点地区展开测试 集中在餐饮、零售、充值等小范围场景
为区块链实时监测了推进数字人民币发展,相关部门正出台一系列扶持措施。
8月14日,商务部印发《关于印发全面深化服务贸易创新发展试点总体方案的通知》(下称《通知》)指出,在京津冀、长三角、粤港澳大湾区及中西部具备条件的试点地区开展数字人民币试点。央行制订政策保障措施区块链实时监测;先由深圳、成都、苏州、雄安新区等地及未来冬奥场景相关部门协助推进,后续视情扩大到其他地区。
在业内人士看来,这并不意味着数字人民币试点区域因此扩大,即当前数字人民币试点仍是“4+1”——在深圳、苏州、雄安新区、成都及冬奥场景进行内部封闭试点测试,但可以预见的是,随着《通知》面世,数字人民币试点的应用场景有望扩展到服务贸易创新发展领域。
在他看来,由于数字人民币支付具有可离线转账、无需绑定银行卡等特点,因此应用场景的扩大对金融机构相关数字人民币支付结算系统的稳定性、反洗钱监测、交易处理效率提升带来新的考验。
“区块链实时监测我们内部也在进行各种压力测试。”他指出。比如当某个场景数字人民币交易处理量突然增长突破一定数量后,整个交易处理系统是否会因此遭遇宕机等系统故障;因此技术部门一直在设计新的技术解决方案,优先确保系统在数字人民币交易处理量激增后的运营稳健性与可靠性。
在《通知》出台后,8月17日早上他所在的银行技术部门讨论了数字人民币试点可拓展的新应用场景,包括医疗、教育、 旅游 、电子商务服务等环节。但多数技术部门人员认为这些面向C端,且交易支付处理量不小的应用场景,尚未具备大范畴普及数字人民币试点的条件——其中一个重要原因是当前他们仍在测试无网络转账功能(即在没有网络情况下,只需两个手机碰一碰,就能将一个人数字钱包里的相应数字货币转账给另一个人数字钱包账户)的操作稳健性与场景适用性。
“目前区块链实时监测我们定期会将数字人民币试点的技术成果及遇到的操作问题,向央行相关部门汇报沟通,若央行相关部门同意我们在技术条件成熟与风控可控情况下,按照《通知》要求将应用场景扩展至服务贸易创新发展领域,我们很快会加大这方面的研发投入与测试。”上述IT部门负责人表示。
将来伴随数字人民币试点应用场景逐步扩大,其交易频率与交易支付处理量增加,会给金融机构反洗钱监控等合规操作构成新的挑战。
在他看来,目前针对数字人民币试点的反洗钱监测手段比较完善,但这主要得益于目前应用场景较低且全程封闭试点。一旦随着应用场景逐步放开且用户、交易支付数量激增,银行能否对海量数字人民币支付转账做到反洗钱实时监测,无疑对银行相关数字货币运营系统研发能力与反洗钱技术更新构成较大的挑战。
“目前,我们也在尝试通过区块链技术解决数字人民币资金流向可追溯及反洗钱实时监测的问题,但区块链仅仅是数字人民币在众多应用场景支付处理领域所研发的一种技术路径,或许还有其他新的技术可以提供更优化的合规操作技术解决方案。”他表示。此外,不少消费应用场景因为流程较长且金融合规操作要求较高,未必适合大额支付型数字人民币支付,相应的反洗钱监测技术手段也需做出调整优化。
责任编辑 李剑华 实习生 李各力
更多内容请下载21 财经 APP
BIM+区块链,让城市建设更智慧
这篇文章,我们聊聊区块链和建筑行业的结合及应用。
在开始正文之前,先解释一下BIM的概念。
BIM (Building Information Modeling) 建筑信息模型化。美国国家BIM标准里面对BIM做了如下的解释:
(1) 以数位化方法表达一个设施的物理和功能特性。
(2) 一个共享的知识资源。
(3) 分享跟这个设施相关的信息,在设施的整个生命周期中为所有的对策提供可靠依据的过程。
(4) 在建设项目的不同阶段中,各参与者经由在信息模型中嵌入、提取、更新和修改信息,以支持与反应各自职责的协同作业。
建筑业是当今全球范围最大的行业之一,未来依然将是世界经济增长的关键驱动力。
建筑业在我国国民经济中的地位举足轻重。国家统计局数据显示,2020年我国国内生产总值为 101万亿 元,其中建筑业总产值为 26万亿 ,占比超过 25% 。
建筑业是一个古老的行业,早在2000多年前的古人就修筑了万里长城、古埃及的金字塔这样的宏伟工程。但是发展至今,建筑业的整体管理水平和效率依然很低,其主要原因大概可归结为以下五点:
1)项目的一次性;
2)组织的松散性和临时性;
3)管理的碎片化;
4)合作的多方性和低效性;
5)生产过程的非标准化和非工业化。
以上原因带来的问题也显而易见:
1) 信任缺失 ,由于项目的一次性、组织的临时性、合作的多方性,带来不可避免的信任缺失。
2) 效率低下 ,由于组织的松散型和临时性,生产过程的非标准化和非工业化,高耗低效,整个建筑行业施工企业的利润水平平均只有3%左右
3) 风险可控性弱 ,由于缺乏系统性的标准化管理体系、管理碎片化,导致工程延期、设计变更、费用索赔几乎每个项目都不可避免。
国内建筑信息化经历了三个阶段,目前正处于第三阶段:
第一阶段: 设计信息化 ,90年代“甩图板”工程推动国内 CAD 技术应用的普及;
第二阶段: 企业信息化管理 ,2005年计算机辅助管理问题解决实现项目和企业管理信息化;
第三阶段: 全生命周期信息化 ,2015年BIM 技术的应用助力建筑业全生命周期信息集成。
1.为何要在建筑领域实施BIM?
住建部 在《 住房城乡建设部关于印发推进建筑信息模型应用指导意见的通知 》中对BIM应用的意义有详细解释,指导意见指出: BIM要为产业链贯通、工业化建造和繁荣建筑创作提供技术保障。也就是说BIM是建筑业工业化转型的技术基础 。
2.BIM具体能干什么?
1)实现建筑全生命期各参与方在同一多维建筑信息模型基础上的数据共享;
2)支持对工程环境、能耗、经济、质量、安全等方面的分析、检查和模拟;
3)为项目全过程的方案优化和科学决策提供依据;
4)支持各专业协同工作、项目的虚拟建造和精细化管理。
3.建筑工业化的意义
1)工业化生产的材质和装配式的建造方式更容易形成一套规范化系统,确保产品品质;
2)装配式建筑的大部分构件均在工厂完成,整体交付比传统建筑快 30%~50%;
3)装配式建筑现场以干法作业为主,可有效减少能源消耗以及环境污染,低碳环保;
4)装配式建筑由于其可拆除的特性还可以实现重复利用;
5)装配式建造成本的下降空间就目前而言,远高于传统建筑,后期运维费用更低,全生命周期具有更大的成本优势。
建筑工业化转型已成为国家级战略
住建部等各部位近年来陆续出台多项促进建筑业工业化、数字化、绿色建造、智能建造的重要政策。
2021年3月,国务院发布了《十四五规划和2035年远景目标纲要》,纲要明确提出要 发展智能建造,推广绿色建材、装配式建筑和钢结构住宅,建设低碳城市的发展目标 。
4.建筑业BIM数字化的重要意义
大力发展建筑工业化、数字化、智能化升级,加大智能建造在工程建设各环节应用,实现建筑业转型升级是建筑业乃至国家近10到20年的战略目标。因此,BIM数字化技术在本次建筑业转型升级过程中必将起到基础性重要作用。
建筑工业化转型的方向是 标准化+工厂化+装配式 ,BIM解决的是这个过程中的 数字集成及可视化 问题。
虽然BIM是建筑业工业化转型过程中不可或缺的技术,但是它并不能有效解决生产关系的问题,比如协作多方之间的信任、效率、复杂体系下的碎片化管理等问题。
而解决信任、协作、效率、复杂体系下的碎片化管理恰恰是区块链技术的天然优势,能够很好的与BIM技术形成互补。
因此我们说: 工业化生产(BIM支持)+数字化协作(区块链支持)+大数据决策(AI技术)=智慧建造
我们把建筑全寿命周期分为规划设计、建造、运维三个阶段来举例说明
1.规划设计阶段
跨部门协作审批将是区块链技术应用的主要场景。
规划设计阶段的特点是行政监管角色多,协作审批手续多,区块链技术的去中心化特征恰好适配此类场景,可以极大的提高协作审批效率(多地政府已开始了区块链政务审批系统的试点)。
我们假设规划设计阶段的监管单位有发改委、国土、交通、住建、水利等,再者相关单位包括建设单位、规划设计等咨询单位,他们在区块链上都有各自的节点,并且各自都有自己的信息化管理系统。
当咨询单位创建好第一阶段的BIM概念模型(比如适用于项目建议书),并加载GIS信息、规模、占地、造价等各项经济指标,将模型数据上区块链。
BIM概念模型及项目建议书经建设单位确认后,由建设单位向发改委启动审批手续,区块链智能合约自动发起所有审核流程。
发改委通过密钥访问区块链上BIM概念模型,必要时加载周边基础设施的BIM模型及GIS信息,分析该项目是否符合城市发展总体规划及项目的可行性,将审批结果上区块链,智能合约自动将审批结果的数据文件发送回建设单位。
同样,建设单位启动土地预审相关手续办理,智能合约启动,国土部门通过密钥访问区块链上的BIM占地模型,并进行审查,将审批结果上区块链,智能合约将批复结果的数据文件发送回建设单位。
与此同时,任何监管部门都可通过密钥验证发改委、国土等部门审批结果的真实性。
随着后续可行性研究、初步设计、施工图设计不断对模型的完善,发改委、国土、交通、住建等行业监管部门随时可以通过密钥访问区块链上该项目的BIM模型数据,实时监测项目有没有违规设计、建造。
所有审批工作的流程在线上自动运行,但不再是基于一个中心化的平台,而是基于去中心化的区块链技术,可有效降低协作成本,提高协作效率,并保证数据的隐私和安全。
2.建造阶段
同样我们假设施工单位、监理单位及其他第三方咨询机构在区块链上也有自己的节点,也都有自己的信息化系统,那么他们都可以通过密钥访问区块链上该项目的BIM模型数据。
我们简单地把建造过程分为计划、采购、生产、验收、支付几个环节。并且假设模型和施工阶段的WBS分解结构是一一对应的。
· 计划环节:
承包人可以通过Office系列的Projec软件,或者国内广联达的斑马进行计划编制,将计划数据文件导入区块链上的BIM模型,BIM模型就有了4D的进度可视化属性(如Autodesk系列的InfraWorks可展示),数据中还可以包括资源、资金等计划。所有参建方都可以基于该BIM模型同步开展项目管理。
· 采购环节:
建筑行业具有高度分散和复杂的供应链体系,供应商和承包人的合作可能是临时性的或者一次性的,因此信任较难建立、协作效率较低。
我们先说区块链是如何解决交易的信任问题的。
区块链是用智能合约来完成交易的,比如对于买方,交易之前智能合约首先检测买方数字钱包(央行数字人民币)的余额(抑或者银行授信、担保额度)是否满足交易标的,如果满足则锁定,当买方验收并签收了卖方的货物后,智能合约将锁定的数字人民币点对点自动汇入卖方的数字钱包。
因此区块链解决的并不是买卖双方的互信问题,而是信任已经不再是问题了。
建筑工程中砂石材料用量大,而且采购频繁、来源分散,是建材供应链中最不易掌控的材料之一。
我们假设承包人在料仓中安装了摄像头,承包人的采购系统通过摄像头检测出料仓余料低于预定的阈值(计算机视觉识别技术),系统调用计划数据(Project导入BIM模型的数据)发现未来的用量需求大于料仓总容量,则启动智能合约自动完成砂石料的订单,甚至可以从多个供应商中选择价格最低的。
砂石料供应商不需要加入任何系统,只需要在区块链节点上创建自己的账户就可以完成与承包人的自动化交易协作。
在运输过程中,供应商将运输车辆或船舶的GPS位置通过IOT硬件实时上区块链,承包人的采购系统就可以通过密钥实时追踪到货物的位置,系统可以对材料供货时间是否对生产计划造成影响进行分析(搜索算法),以便重新启动智能合约进行补救。
每一批材料的采购批次、到货时间都可以写入BIM模型对应的位置并写入区块链账本,智能合约将提醒监理单位按材料到场批次组织验收或试验检测工作。
系统可以把项目经理从繁杂的订单、询价、账务处理中解脱出来,更好的投入到更重要的事项上。
· 生产环节:
生产过程必然离不开人和设备。
工业化的一个必然的结果就是效率和质量的提高,而人和设备的过程行为质量将决定产品质量的形成过程。
因此过去以结果为导向的施工过程管理必然要转向工业化的以过程为导向的施工管理,那么每一个分项工程由哪些个班组生产,对每一组混凝土的施工配合比参数进行实时(IOT硬件)监测并写入BIM模型对应的位置,同时将这些数据写入区块链账本,永久保存、不可篡改,生产过程的所有数据应该真实、可信。
我们假设大型构建由吊装设备进行安装,再假设如果在暴雨天气、或者风力超过六级的情况下不适合吊装作业,那么吊装设备通过IOT硬件(或者网络通讯)感应到这种极限状态后,区块链智能合约将提醒现场管理人员将设备恢复到安全状态,直至危险状态解除。
生产过程中每一台设备运行的油耗、用电将通过IOT硬件进行监测,并将这些数据写入区块链账本。
区块链智能合约自动对耗能进行碳排放指标计算(GBT 51366-2019),一旦发现碳排放超过了核定指标,自动在碳交易市场购买新的指标。
前面提到的所有生产设备上的IOT硬件都无需接入参建各方的系统,参建各方只需要通过设备的密钥就可以进行数据访问。也许这个密钥被设备开发商设计成了一个客户端(如APP),那么参建各方只需要安装一个客户端就可以访问设备生成的所有数据。
· 验收环节
我们假设混凝土构建的强度由试验设备(IOT硬件)将数据直接写入BIM模型对应的位置,并写入区块链账本。
构建的外观尺寸、钢筋数量或许可以利用三维激光扫描设备生成点云,与BIM设计模型进行比对,可以根据质量检验评定标准精确计算出蜂窝麻面的百分比,验收精度将远高于人工计算的精度,写入BIM模型的对应位置和区块链账本。
所有参与验收的人员和数据写入区块链账本后永久保存,不可篡改。
假如发生质量问题,区块链上的账本记录就像按时间顺序排列的一笔流水账,从当前记录开始一直向前追溯,谁验收的?谁制造的?谁运输的?谁采购的?谁供应的一目了然。
· 支付阶段:
随着数字人民币的正式发行,并且支持可编程性,当数字人民币进入工程款支付领域后,可以说每一笔工程款的去向已基本固定,都可以在区块链进行追踪,根本不可能发生工程款挪用现象。那么当工程质量经过验收合格,符合智能合约设定的条件,则自动触发智能合约点对点的支付操作。不再经过银行,还可以降低企业的财务成本。
因此根据基本建设程序的规定,未来资金未落实的项目必然得不到开工审批,获得开工审批的项目,承包人、专业分包人、材料供应商甚至劳务人员再也无需担心拖欠工程款的问题了。
当BIM模型与实体建筑物实施锚定,实现数字资产化后,数字资产的所有权在区块链就可以实现流动。
我们假如一个实体工程构件在业主尚未支付工程款以前的所有权还暂时保留在承包人手里,当一个承包人资金出现困难,恰好区块链上的BIM数字资产(锚定了实体工程构件)证明了一定的未来收益(业主未来支付的一笔工程款),那么承包人完全可以将这部分数字资产的所有权进行抵押贷款,智能合约可以锁定未来业主支付的那一笔工程款,用于承包人赎回该笔数字资产的所有权。
3. 运维阶段
在运维阶段很好的一个场景就是设备与设备之间的智能交互。
我们假设一台无人驾驶的巡逻车通过计算机视觉识别系统发现公路上沥青路面的一处缺陷,触发智能合约启动另外一台沥青路面维修车,该维修车同样用智能合约自动下单采购所需要的沥青混合料修复材料,并自动行驶至缺陷处完成修复,在此过程中只有少量的或者根本无需人的干预。
综上所述,区块链技术+BIM可以更好地实现智慧建造,反过来BIM模型又可以作为区块链技术的数据仪表盘,随着IOT硬件的不断涌现(尤其在运维阶段),数据的不断填充,模型的不断刷新,维度越来越饱满,所见即所得,区块链+BIM将会成为一个更加智慧的智慧建造决策系统。
文章中我们列举了规划设计、建造、运维三个阶段中一些点的应用,而现实中的应用场景远不止这些例子,这些例子也仅仅起到以点带面的探讨。
文章中提到的所有技术都是现今已有的或是已经实现的功能(如区块链政务系统、供应链追踪,质量溯源等),欠缺的只是把这些技术整合起来,就像区块链技术原本也不是一项新技术,而是把分布式存储、非对称加密、共识算法等计算机现有技术整合起来,成就了这一伟大发明。
也许有人会说,BIM正向设计在我国建筑行业还未普及,基于BIM的4D、5D数字化建造管理才开始普及,此时探讨区块链技术+BIM的智慧化建造是不是为时过早?
而我想说的是,
BIM的概念早在1975年美国乔治亚理工大学ChuckEastman博士就提出了,2002年Autodesk公司正式提出BIM理念和技术,从3D的可视化开始已经发展到了今天8D的概念。
区块链技术也是早在2008年由中本聪提出,至今除了数字货币,在其他非数字货币领域也有了极为广泛的应用。
就像人工智能技术,
1956年由计算机专家约翰·麦卡锡首次提出,但一直受限于计算机技术和硬件止步不前,直至2012年的ImageNET挑战赛中视觉识别准确率达到95%以上,超越人眼的极限,在突破了计算机硬件和技术限制之后人工智能技术的应用迎来了大爆发,才有了近年来我们手机中美颜相机、语音识别、智能推送等生活应用的集中爆发。
所以说,任何一项技术,在它大规模应用爆发前,能量一直在积累,这是一个必经的过程。一方面可能是技术、硬件的限制,另一个很重要的原因就是懂得人太少、参与的人太少,一旦大家都懂了、都会了,这种爆发力就会自然而然的蓬勃出来。
就像我们在不停地吹一个气球,总有一天它会炸开 。
如果你也对区块链应用感兴趣,搜索微信公众号“ Candy链上笔记 ”,我们一起前行。
如何检测区块链智能合约的风险等级高低
随着上海城市数字化转型脚步的加快,区块链技术在政务、金融、物流、司法等众多领域得到深入应用。在应用过程中,不仅催生了新的业务形态和商业模式,也产生了很多安全问题,因而安全监管显得尤为重要。安全测评作为监管重要手段之一,成为很多区块链研发厂商和应用企业的关注热点。本文就大家关心的区块链合规性安全测评谈谈我们做的一点探索和实践。
一、区块链技术测评
区块链技术测评一般分为功能测试、性能测试和安全测评。
1、功能测试
功能测试是对底层区块链系统支持的基础功能的测试,目的是衡量底层区块链系统的能力范围。
区块链功能测试主要依据GB/T 25000.10-2016《系统与软件质量要求和评价(SQuaRE)第10部分:系统与软件质量模型》、GB/T 25000.51-2016《系统与软件质量要求和评价(SQuaRE)第51部分:就绪可用软件产品(RUSP)的质量要求和测试细则》等标准,验证被测软件是否满足相关测试标准要求。
区块链功能测试具体包括组网方式和通信、数据存储和传输、加密模块可用性、共识功能和容错、智能合约功能、系统管理稳定性、链稳定性、隐私保护、互操作能力、账户和交易类型、私钥管理方案、审计管理等模块。
2、性能测试
性能测试是为描述测试对象与性能相关的特征并对其进行评价而实施和执行的一类测试,大多在项目验收测评中,用来验证既定的技术指标是否完成。
区块链性能测试具体包括高并发压力测试场景、尖峰冲击测试场景、长时间稳定运行测试场景、查询测试场景等模块。
3、安全测评
区块链安全测评主要是对账户数据、密码学机制、共识机制、智能合约等进行安全测试和评价。
区块链安全测评的主要依据是《DB31/T 1331-2021区块链技术安全通用要求》。也可根据实际测试需求参考《JR/T 0193-2020区块链技术金融应用评估规则》、《JR/T 0184—2020金融分布式账本技术安全规范》等标准。
区块链安全测评具体包括存储、网络、计算、共识机制、密码学机制、时序机制、个人信息保护、组网机制、智能合约、服务与访问等内容。
二、区块链合规性安全测评
区块链合规性安全测评一般包括“区块链信息服务安全评估”、 “网络安全等级保护测评”和“专项资金项目验收测评”三类。
1、区块链信息服务安全评估
区块链信息服务安全评估主要依据国家互联网信息办公室2019年1月10日发布的《区块链信息服务管理规定》(以下简称“《规定》”)和参考区块链国家标准《区块链信息服务安全规范(征求意见稿)》进行。
《规定》旨在明确区块链信息服务提供者的信息安全管理责任,规范和促进区块链技术及相关服务的健康发展,规避区块链信息服务安全风险,为区块链信息服务的提供、使用、管理等提供有效的法律依据。《规定》第九条指出:区块链信息服务提供者开发上线新产品、新应用、新功能的,应当按照有关规定报国家和省、自治区、直辖市互联网信息办公室进行安全评估。
《区块链信息服务安全规范》是由中国科学院信息工程研究所牵头,浙江大学、中国电子技术标准化研究院、上海市信息安全测评认证中心等单位共同参与编写的一项建设和评估区块链信息服务安全能力的国家标准。《区块链信息服务安全规范》规定了联盟链和私有链的区块链信息服务提供者应满足的安全要求,包括安全技术要求和安全保障要求以及相应的测试评估方法,适用于指导区块链信息服务安全评估和区块链信息服务安全建设。标准提出的安全技术要求、保障要求框架如下:
图1 区块链信息服务安全要求模型
2、网络安全等级保护测评
网络安全等级保护测评的主要依据包括《GB/T 22239-2019网络安全等级保护基本要求》、《GB/T 28448-2019网络安全等级保护测评要求》。
区块链作为一种新兴信息技术,构建的应用系统同样属于等级保护对象,需要按照规定开展等级保护测评。等级保护安全测评通用要求适用于评估区块链的基础设施部分,但目前并没有提出区块链特有的安全要求。因此,区块链安全测评扩展要求还有待进一步探索和研究。
3、专项资金项目验收测评
根据市经信委有关规定,信息化专项资金项目在项目验收时需出具安全测评报告。区块链应用项目的验收测评将依据上海市最新发布的区块链地方标准《DB31/T 1331-2021 区块链技术安全通用要求》开展。
三、区块链安全测评探索与实践
1、标准编制
上海测评中心积极参与区块链标准编制工作。由上海测评中心牵头,苏州同济区块链研究院有限公司、上海七印信息科技有限公司、上海墨珩网络科技有限公司、电信科学技术第一研究所等单位参加编写的区块链地方标准《DB31/T 1331-2021 区块链技术安全通用要求》已于2021年12月正式发布,今年3月1日起正式实施。上海测评中心参与编写的区块链国标《区块链信息服务安全规范》正处于征求意见阶段。
同时,测评中心还参与编写了国家人力资源和社会保障部组织,同济大学牵头编写的区块链工程技术人员初级和中级教材,负责编制“测试区块链系统”章节内容。
2、项目实践
近年来,上海测评中心依据相关技术标准进行了大量的区块链安全测评实践,包括等级保护测评、信息服务安全评估、项目安全测评等。在测评实践中,发现的主要安全问题如下:
表1 区块链主要是安全问题
序号
测评项
问题描述
1
共识算法
共识算法采用Kafka或Raft共识,不支持拜占庭容错,不支持容忍节点恶意行为。
2
上链数据
上链敏感信息未进行加密处理,通过查询接口或区块链浏览器可访问链上所有数据。
3
密码算法
密码算法中使用的随机数不符合GB/T 32915-2016对随机性的要求。
4
节点防护
对于联盟链,未能对节点服务器所在区域配置安全防护措施。
5
通信传输
节点间通信、区块链与上层应用之间通信时,未建立安全的信息传输通道。
6
共识算法
系统部署节点数量较少,有时甚至没有达到共识算法要求的容错数量。
7
智能合约
未对智能合约的运行进行监测,无法及时发现、处置智能合约运行过程中出现的问题。
8
服务与访问
上层应用存在未授权、越权等访问控制缺陷,导致业务错乱、数据泄露。
9
智能合约
智能合约编码不规范,当智能合约出现错误时,不提供智能合约冻结功能。
10
智能合约
智能合约的运行环境没有与外部隔离,存在外部攻击的风险。
3、工具应用
测评中心在组织编制《DB31/T 1331-2021 区块链技术安全通用要求》时,已考虑与等级保护测评的衔接需求。DB31/T 1331中的“基础设施层”安全与等级保护的安全物理环境、安全通信网络、安全区域边界、安全计算环境、安全管理中心等相关要求保持一致,“协议层安全”、“扩展层安全”则更多体现区块链特有的安全保护要求。
测评中心依据DB31/T 1331相关安全要求,正在组织编写区块链测评扩展要求,相关成果将应用于网络安全等级保护测评工具——测评能手。届时,使用“测评能手”软件的测评机构就能准确、规范、高效地开展区块链安全测评,发现区块链安全风险,并提出对应的整改建议
区块链实时监测的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于区块链追踪技术、区块链实时监测的信息别忘了在本站进行查找喔。
标签: #区块链实时监测
评论列表